

RF Power Amplifier

Applications

- RF front end
- 868/915 MHz ISM band systems
- Wireless Metering (AMR/AMI) Systems
- Smart Grid Wireless Networks
- Wireless audio
- Alarm and security systems
- Home and building automation
- Wireless sensor networks
- Industrial monitoring and control

Product Description

BITxxxPA27R2 is a very low cost RF power amplifier module designed for medium range wireless applications.

BITxxxPA27R2 integrates a power amplifier, a low-noise amplifier, switchs, a saw filter and is matched to 50 ohm both input and output.

This module is intended for ISM (Industrial, Scientific and Medical) and frequency band @ 868, 915 Mhz:

Key Features

- Small size (14,4 x 14,4 mm package, 12 pins).
- 1-uA in Power Down (LNA_EN=PA_EN= 0)
- Receive Current Consumption
 - 16 mA for High Gain Mode
 - 10 mA for Low Gain Mode
- $\circ~~$ 2 V to 3.7 V Operation

BIT915PA27 for 915 MHz.

BIT868PA27R2 for 868 MHz and

In a typical system **BITxxxPA27R2** will be used together with all BIT's modules

BITxxxPA27R2 has a very small package: only 14,4 x 14,4 mm ready for SMT assembly.

- Frequency bands:
 - 1. BIT868PA27R2 868 MHz
 - 2. BIT915PA27R2 915 MHz
- $\circ~$ High output power (up to 27 dBm).
- $\circ \quad 12 \text{ or } 14 \text{dB Gain in Receive Mode}$
- \circ Ideal for multi-channel operation.
- Pb-free (RoHS compliant) package.

1. ABSOLUTE MAXIMUM RATINGS

Under no circumstances must the absolute maximum ratings be violated. Stress exceeding one or more of the limiting valuesmay cause permanent damage to the device.

		VALUE	UNIT
Supply voltage, VDD	All supply pins must have the same voltage	0 to 4.2	V
Voltage on any digital pin		0 to 3.6	V
TX RF Input power		7	dBm
ANT RF Input Power	When RX is "ON"	5	dBm
Storage Ambient temperature		-50 to 150	°C

2. RECOMMENDED OPERATING CONDITIONS

	MIN	MAX	UNIT
Operating Ambient temperature range	-40	85	°C
Operating supply voltage	2.7	3.6	V
Operating frequency range BIT868PA27R2	865	873	Mhz
Operating frequency range BIT915PA27R2	902	928	Mhz
Control Voltage "High"	1.2	VDD	V
Control Voltage "Low"		0.3	V

3. ELECTRICAL CHARACTERISTICS

 $TC = 25^{\circ}C$, VDD = 3.3 V, fRF = 868 MHz.

Parameter	Test conditions		Тур	Max	Unit	
DC Characteristics						
DC Control Pin Current	RXEN, TXEN, and MODE Pins		0.1		uA	
Consumption						
DC Shutdown Current			1		uA	
Transmit-Receive Switching Time				1	uSec	
Shut-Down and "ON" State	Shut-Down and "ON" State			1	uSec	
Switching Time						
TRANSMIT TECHNICAL PARAMET	ERS					
Saturated Output Power	In Band	+26	+27		dBm	
Linear Output Power	For 3% EVM, 802,11ah, 4MHz/64QAM		16		dBm	
Large Signal Gain	Pout = $+278$ dBm		28		dB	
Lorgo Signal Current	POUT = +27 dBm, Burst, 10% Duty		350		mA	
	Cycle					
Quiescent Current			40		mA	
Second Harmonic	$LNA_EN = PA_EN = 0$		-32		dBc	
Third Harmonic	HGM, LNA_EN, PA_EN		-22		dBc	
Input Return Loss (S11)	HGM, LNA_EN, PA_EN		-10		dB	
Input/Output Impedance Single-			50		Ohm	
Ended						
Power Detector Voltage		200		1800	mV	
VSWR for stability	PIN = -40 dBm, HGM = 1		6:1		db	
VSWR for ruggedness	PIN = -40 dBm, HGM = 0		10:1		UD	
RECEIVE TECHNICAL PARAMETER	RS					
Cain	High Gain Mode		14		dB	
Gain	Low Gain Mode		12		UD	
Noise Figure	High Gain Mode		3			
	Low Gain Mode	3.5				
Input Return Loss (S11)	At RFOUT Pin		-10		dB	
Output Return Loss (S22)	At RFIN Pin		-10		dB	
RF Port Impedance	At RFOUT and RFIN Pins		50		Ohm	
DC Current	POUT < -10dBm, High Gain Mode		16		mA	
DC Current	POUT < -10dBm, Low Gain Mode		10		mA	
Input D1dP	High Gain Mode -5			dDaa		
	Low Gain Mode	-5		UDIII		

4. DEVICE INFORMATION

14.4mm x 14.4mm

5. Pin-Out

Pin #	Pin Name	Pin Type	Descrizione
P1	GND1	Ground	Ground ConnectionT
P2	TXEN	Digital Input	CMOS Input to Enable Transmit Mode
P3	VDD	Power	Power supply connection
P4	GND4	Ground	Ground connection for RFIN
P5	RF_IN	RF	RF Input signal (max 10 dBm)
P6	GND6	Ground	Ground connection for RFIN
P7	RXEN	Digital Input	CMOS Input to Enable Receive Mode
P8	DET	OUT	Analog Voltage Proportional to the PA Power Output
P9	MODE	Digital Input	CMOS Input to Control High Gain/Low Gain for RX
P10	GND10	Ground	Ground connection for RFOUT
P11	RF_OUT	RF	RF output signal
P12	GND12	Ground	Ground connection for RFOUT

6. Truth Table

TXEN	RXEN	MODE	Operating Conditions
0	0	Х	Shut-down
0	1	0	RX Active, Low Gain Mode
0	1	1	RX Active, High Gain Mode
1	Х	Х	TX Active

7. Typical application

8. Package Description (All dimension in mm)

9. Recommended footprint (All dimension in mm)

A PCB with two or more layers and with a solid ground plane in one of the inner-or bottom layer(s) is recommended. All GND-pins of the module shall be connected to this ground plane with vias with shortest possible routing, one via per GND-pin

The area underneath the module should be covered with solder resist in order to prevent short circuiting the test pads on the back side of the module. A solid ground plane is preferred.

10. General Information

Disclaimer

B.I.T. srl believes the information contained herein is correct and accurate at the time of this printing. However, B.I.T. srl reserves the right to make changes to this product without notice. B.I.T. srl does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the BIT website or by contacting BIT directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes published at the BIT website. Customers are encouraged to sign up to the Developers Newsletter for the most recent updates on products and support tools.

Compliance with regulations is dependent on complete system performance. It is the customer's responsibility to ensure that the system complies with regulations.

Life Support Policy

This BIT product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. B.I.T. srl customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify B.I.T. srl for any damages resulting from any improper use or sale.

Bit is Italian Technology S.r.I. Viale delle Industrie, 20 20020 Arese Tel.: (+39) 02 30465311, fax: (+39) 02 30465396 http://www.bit.it/ info@bit.it

http://www.kevin.it/

info@kevin.it